Effective Diagnostic Strategies for Wide Area Networks

Matt Mathis <mathis@psc.edu>
Peter O’Neil <poneil@ucar.edu>

11-Dec-2003

Slides: http://www.psc.edu/~mathis/papers/Diagnosis200312/
New Diagnostic Research

- Freshly funded NSF STI
 - 3 Years
 - PSC + NCAR
 - Grant ANI-0334061

- Builds on Web100 & Net100
 - Including some existing prototypes

- Addresses the next tier of performance problems
 - Web100 was "End-system only"
 - Now turn our attention to the path
Key Observation

- Symptoms are scaled by RTT
 - For server S
 - Local Client, LC, works fine
 - Remote Client, RC, fails

- Applies to:
 - most types of flaws
Examples

- Chatty application (e.g. 50 RTT per user request)
 - On a 1 ms LAN, 50 ms total time
 - On a 100 ms WAN, 5 s total time

- Fixed TCP buffer space (e.g. 32 kBytes)
 - On a 1 ms LAN, 200 Mb/s limit
 - On a 100 ms WAN, 2 Mb/s limit

- Packet Loss (e.g. 1%, with 9 kB packets)
 - On a 1 ms LAN, 500 Mb/s limit
 - On a 100 ms WAN, 5 Mb/s limit

- Also applies to TCP stack bugs
 - Defective Fast Retransmit, RTO timers, No SACK, etc
Confounds classic diagnostics

- False pass on short paths
 - Obscures true local bugs
 - Incorrectly implicates other components

- Stymies end-to-end diagnosis
 - e.g. In situ tomography
Our primary approach

- Web100 based diagnostic server
 - Simple TCP test to a test target
 - Use MIB & model to rescale results

- TCP discard server for test target
 - Trivial to widely deploy
 - C or Java

- Estimates results for long path
End to End Diagnosis

- Approx 1 Diagnostic Server per campus/Gigapop/Backbone/Interconnect

- Test Targets at almost every pop/hub or LAN (or above)
End user tool

- Web/java client
 - With built in test target
 - Invokes test on DS back to self

- http://whisper.cs.utk.edu:7123/
Other approaches in the project

- Bench test applications and end-systems (stacks)
 - NOTE: out of scope for this meeting!

- Use long ideal (virtual) paths
 - Dummynet style emulated delay
 - Tunnel or VPN style "scenic" routing

- etc
Goal

- Tools to compensate for results that scale by RTT
Our non-goals

- Overall diagnostic framework or architecture
- New authentication and authorization
- Locating diagnostic servers and test targets
- Global infrastructure
Epilogue

- All single point failures are easy to find and correct

- Remaining failures are co-failures:
 - RTT, loss and MTU
 - RTT and application design
 - Packet rate limit and MTU
 - Queue size and burstyness due to
 - ACK compression and cross traffic or
 - Application design

- Failures are due to interaction between elements
 - THERE IS NO INTRINSIC BLAME