Thinking about the big problem

Matt Mathis
Pittsburgh Supercomputing Center (PSC)
20 May 2009

http://staff.psc.edu/mathis/unfriendly
Parable

- You can't build a palace when you live in a hovel
- To build a palace you need an estate
- To build an estate, you need a house
- To build a house, you a shed
- You can build a shed while you live in a hovel
The point

- Making really large changes requires iterating on incremental improvements, some of which might not be part of the final vision.

- Note that the only really precious protocol real-estate is the header fields used by (future) legacy code. Everything else, including standards can be undone or redone.
 - We don't want to regret allocating bits
We must be wary of false tussles

• Question: What conflicts with re-ECN:
 – DSCP/PHB based QoS?
 – Weighted Fair Share Queueing (and variants)?
 – FAST, LEDBAT and other delay sensing TCPs?
 – ECN Nonce?
Answer?

• I claim the only conflict is the ECN-Nonce
 – Because it has conflicting definitions of the bits
• All others should be expected to coexist with RE-ECN in the steady state
 – They address (mostly) orthogonal problems
 – We have to assume that they are optimal somewhere
 – Any attitude “that they are not needed” WEAKENS us
A digression: A potential major change

- Default (as shipped) maximum TCP window size
 - Was 32-64k for most stacks
 - Now 512k-16MB for ALL current products

- This was an explicit goal of the web100 project
 - Out-of-the-box configurations that support
 - Global scale paths at 10 Mb/s
 - (Near) Continental scale paths at 100 Mb/s
 - Metro scale paths above 1 Gb/s

- Reminder: Standard TCP Congestion control:
 - Gets its self clock from queued data at a bottleneck
 - Opens the window until it causes losses
 - Normally requires queues
In the past, limited TCP windows permitted,

• At edges (light multiplexing):
 – Any device to have larger buffers than N connections
 – suppresses AIMD sawtooth
 – Not really using congestion control

• In the core (heavy multiplexing):
 – All flows have bottlenecks elsewhere
 • Load grows as population of edges and content
 • Load does not grow with Moore's law at the edges
 – ISPs can out build the load
 – No significant queues in the network
 • Not really using congestion control
 • No need for QoS

• Most flows have bottlenecks outside the network
More than 10x Growth in TCP Window sizes

- Nearly every individual flow has the potential to cause network congestion somewhere
- Don't want network buffers larger than TCP window
 - Can't suppress background CC losses
 - W/O AQM can't avoid symptoms of full queues
 - Synchronization and lockout, etc
 - Must have AQM to prevent full queues
 - Can't set AQM thresholds low enough to protect real-time
- Any drop tail queue anywhere may be problematic
- Can't avoid trying to get AIMD into equilibrium
 - In the past TCP only looked like the text book in a few places
 - In the near future, it will be much more common
 - And it will become obvious to everyone that AIMD doesn't really work
Impact

• Force the deployment of QoS
 – Segregate TCP which requires queues from delay intolerant traffic

• This was a tongue-in-cheek goal of Web100
 – But I said it in public many times

• Relentless TCP (see talk tomorrow)
 – Intended to force the differentiation between:
 • Best Effort (BE)
 • Less than Best Effort (aka BE, LBE or scavenger)
 – Low priority but relatively long queue
 – Optimal for “background” transfers and non-standard CC
 – Optimal to fill otherwise idle gaps
Thoughts about QoS

• It is a mechanism to trade-off:
 – Loss
 – Queueing delay/jitter
 – Relative performance (data rate or “priority”)
 – Price

• I suspect that 3 service classes are important
 – I am doubtful about the rest

• RE-ECN hunch:
 – Nearly completely orthogonal
 – Probably want separate accounting per class
Meta comments about QoS

- The QoS deployment gate is not QoS itself, but other seemingly unrelated technology
- Each advance depends on other technologies to provide the foundation

- The Internet has no brakes
 - A digression
 - Re-ECN is an important part, but NOT sufficient by itself
Returning to the main topic

• Elements of Re-ECN's foundation or context
 – QoS
 • Traffic segregated into a few classes with separate queues
 – Pervasive AQM
 • Eliminate drop tail
 – 1/p Congestion Control (See “Relentless” tomorrow)
 • Eliminating the next TCP lameness
 – Weighted Congestion Control (w/sqrt(p) or w/p)
 • Give the users a knob to optimize their usage
 – Economic/cost models for ALL types of networks
 • RE-ECN supports one particular world view
 – Impact/effect of huge global cost disparities
 • Does RE-ECN have to be “one-size-fits-all”